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Introduction

Welcome to “50 Examples for Teaching Python”.

My goal was to collect interesting short examples of Python programs,
examples that tackle a real-world problem and exercise various
features of the Python language.  I envision this collection as being
useful to teachers of Python who want novel examples that will
interest their students, and possibly to teachers of mathematics or
science who want to apply Python programming to make their subject
more concrete and interactive.

Readers may also enjoy dipping into the book to learn about a
particular algorithm or technique, and can use the references to
pursue further reading on topics that especially interest them.


Python version

All of the examples in the book were written using Python 3, and
tested using Python 3.2.1.  You can download a copy of Python 3 from
<http://www.python.org/download/>; use the latest version available.

This book is not a Python tutorial and doesn’t try to introduce
features of the language, so readers should either be familiar with
Python or have a tutorial available.  Classes and modules are used
right from the beginning, for example; the early programs do not use a
subset of the language that’s later expanded by the introduction of
more sophisticated features such as classes.




License

The English text of this work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a
copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to
Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA.

This license forbids publishing and selling copies of the book, but
you are free to print copies for your own private or educational use.
For example, it’s OK to print out a section as a handout for a class,
or to include sections in documents that you write and make available
under the same Creative Commons license.

If you wish to sell copies of the book or include partial sections of
the text in your own works made available under a different license,
please contact the author to request permission.

The software programs are released under the MIT license, and you are
free to use or modify them in any way you like, including for
commercial purposes or in other documentation projects.

The original source text and example code is available at
https://github.com/akuchling/50-examples, and is formatted
using the Sphinx documentation tool (http://sphinx.pocoo.org).

Please send questions, suggestions, and comments to
the e-mail address below.


A.M. Kuchling

amk@amk.ca









          

      

      

    

  

    
      
          
            
  
Convert Fahrenheit to Celsius

We’ll begin with a very simple example to illustrate the format used
for each example.  Each section will start with a discussion of the
problem being solved, giving its requirements and sometimes a brief
discussion of its history.

Most of the world uses the Celsius scale to indicate temperatures, but
the United States still uses the Fahrenheit scale.  We’ll write a
little script that takes Fahrenheit temperatures and prints their
corresponding values in Celsius.  (The author, who’s a Canadian living
in the United States, first wrote this script because when listening
to weather reports he could never remember if 85 degrees Fahrenheit is
pleasantly warm or scorchingly hot.)


Approach

Here we’ll discuss the algorithm or approach taken to solving the
problem.

The calculation for the temperature conversion is straightforward and
references can be found all over the place.  Celsius and Fahrenheit
have different zero points – 0 degrees Celsius is 32 degrees
Fahrenheit – so we need to subtract 32 from the Fahrenheit
temperature.

The size of the units are also different.  Celsius divides the
temperature span between the freezing and boiling points of water into
100 degrees, while Fahrenheit divides this range into 180 degrees, so
we need to multiply the value by 5/9 to turn 180 degrees into 100.




Solution

Next we’ll present the complete program listing.  The source code for
this book also includes test suites for each program, but the test
suites won’t be shown in the book.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	#!/usr/bin/env python3

import sys

def convert_f2c(S):
    """(str): float

    Converts a Fahrenheit temperature represented as a string
    to a Celsius temperature.
    """
    fahrenheit = float(S)
    celsius = (fahrenheit - 32) * 5 / 9
    return celsius

def main():
    # If no arguments were given, print a helpful message
    if len(sys.argv) == 1:
        print('Usage: {} temp1 temp2 ...'.format(sys.argv[0]))
        sys.exit(0)

    # Loop over the arguments
    for arg in sys.argv[1:]:
        try:
            celsius = convert_f2c(arg)
        except ValueError:
            print("{!r} is not a numeric value".format(arg),
                  file=sys.stderr)
        else:
            print('{}\N{DEGREE SIGN}F = {:g}\N{DEGREE SIGN}C'.format(
                    arg, round(celsius, 0)))

if __name__ == '__main__':
    main()










Code Discussion

Here we will dive further into the code, discussing particularly
interesting sections of code, programming techniques, or larger
issues.

The conversion to Celsius done by the convert_f2c() function is
a straightforward calculation.  An input string is converted to
a floating-point value.  If there’s a problem, the resulting ValueError
exception is not handled here but instead is left for the caller to catch.

Notice that the main() function tries to print a helpful message
when no command-line arguments are provided, and it also
catches the ValueError.  For pedagogical programs like this, I will
try to ensure the error handling is helpful to a user experimenting with
the script.




Lessons Learned

Finally, does this program demonstrate any interesting themes
about Python, about programming in general, or about its subject matter?

For this celsius example, I’ll discuss Python’s string format()
method and the mini-language it uses, since it will be used throughout
our example programs.

The strings used with the format() method will
contain a replacement field specification inside curly brackets ({ }).
It’s possible to leave the specification empty (just {})
but we can also specify the position and type of the argument to use
and how the resulting value should be rendered.  A few examples:

'{!r}'.format(v)     # Equivalent to repr(v)
'{!s}'.format(v)     # Equivalent to str(v)

# Explicitly give the position of the argument to use for
# each field. Results in the string "arg2 arg1"
'{1} {0}'.format('arg1', 'arg2')





We can also specify formatting details such as the number of decimal
places, style of numeric display, and left- or right-alignment.  This
comes within the curly brackets and following a : character.

We can left-align, right-align, or center a string within
a desired output width, optionally giving the character to be used
for padding:

>>> '{0:<15}'.format('left-justify')
'left-justify   '
>>> '{0:>15}'.format('right-justify')
'  right-justify'
>>> '{0:*^15}'.format('centered')
'***centered****'





We can output a value in binary, octal, decimal, or hexadecimal:

>>> '{0:b}'.format(1972)
'11110110100'
>>> '{0:o}'.format(1972)
'3664'
>>> '{0:d}'.format(1972)
'1972'
>>> '{0:x}'.format(1972)
'7b4'





We can request rounding to a specific number of decimal places,
exponential notation, or displaying as a percentage:

>>> '{0:d}'.format(2**32)
'4294967296'
>>> '{0:e}'.format(2**32)
'4.294967e+09'
>>> '{0:%}'.format( 45 / 70 )
'64.285714%'
>>> '{0:.2%}'.format( 45 / 70 )
'64.29%'





The complete syntax for format strings is documented in
the Python Library Reference at
<http://docs.python.org/library/string.html#format-string-syntax>.




References

The references in each section will be to
useful web pages, Wikipedia entries, software libraries,
and books.  Generally each reference is annotated with a short
explanation of what’s in it and why it might be of interest, to help
you in deciding which references to pursue.


	http://books.google.com/books?id=lnmrSAAACAAJ

	“A Matter of Degrees: What Temperature Reveals About the Past and
Future of Our Species, Planet and Universe”, by Gino Segré, is an
entertaining tour through science using the concept of temperature
as the connecting thread, including: biological aspects such as the
regulation of body temperature and the thermophile species that
cluster around deep-sea superheated vents; the theoretical arguments
underlying global warming; the discovery of the laws of
thermodynamics; low-temperature phenomena such as superconductivity
and helium’s superfluidity; and the temperature of the
cosmic microwave background.









          

      

      

    

  

    
      
          
            
  
Background: Algorithms

An algorithm specifies a series of steps that perform a particular
computation or task.  Algorithms were originally born as part of
mathematics – the word “algorithm” comes from the Arabic writer
Muḥammad ibn Mūsā al-Khwārizmī, – but currently the word is strongly
associated with computer science.  Throughout this book we’ll examine
a number of different algorithms to perform a variety of tasks.

Algorithms resemble recipes.  Recipes tell you how to accomplish a
task by performing a number of steps.  For example, to bake a cake the
steps are: preheat the oven; mix flour, sugar, and eggs throughly;
pour into a baking pan; and so forth.

However, “algorithm” is a technical term with a more specific meaning
than “recipe”, and calling something an algorithm means that the
following properties are all true:


	An algorithm is an unambiguous description that makes clear what has
to be implemented.  In a recipe, a step such as “Bake until done” is
ambiguous because it doesn’t explain what “done” means.  A more
explicit description such as “Bake until the cheese begins to
bubble” is better.  In a computational algorithm, a step such as
“Choose a large number” is vague: what is large?  1 million,  1
billion, or 100?  Does the number have to be different each time, or
can the same number be used on every run?

	An algorithm expects a defined set of inputs. For example, it might
require two numbers where both numbers are greater than zero.
Or it might require a word, or a list of zero or more numbers.

	An algorithm produces a defined set of outputs.  It might output
the larger of the two numbers, an all-uppercase version of a word,
or a sorted version of the list of numbers.

	An algorithm is guaranteed to terminate and produce a result,
always stopping after a finite time.  If an algorithm could potentially
run forever, it wouldn’t be very useful because you
might never get an answer.

	Most algorithms are guaranteed to produce the correct result.  It’s
rarely useful if an algorithm returns the largest number 99% of the time,
but 1% of the time the algorithm fails and returns the smallest
number instead. [1]

	If an algorithm imposes a requirement on its inputs (called a
precondition), that requirement must be met.  For example,
a precondition might be that
an algorithm will only accept positive numbers as an input.  If
preconditions aren’t
met, then the algorithm is allowed to fail by producing the wrong
answer or never terminating.



Studying algorithms is a fundamental part of computer science.
There are several different characteristics of an algorithm
that are useful to know:


	Does an algorithm actually exist to perform a given task?

	If someone proposes an algorithm to solve a task,
are we sure that the algorithm works for all possible inputs?

	How long does the algorithm take to run?  How much memory space does
it require?

	Once we know it’s possible to solve a problem with an algorithm,
a natural question is whether the algorithm is the best possible one.
Can the problem be solved more quickly?



Most of these questions will be discussed for the algorithms covered
in this book.


An Example Algorithm

Let’s look at a very simple algorithm called find_max().

Problem: Given a list of positive numbers, return the largest number
on the list.

Inputs: A list L of positive numbers.  This list must contain at least one
number.  (Asking for the largest number in a list of no numbers
is not a meaningful question.)

Outputs: A number n, which will be the largest number of the list.

Algorithm:


	Set max to 0.

	For each number x in the list L, compare it to max.
If x is larger, set max to x.

	max is now set to the largest number in the list.



An implementation in Python:

def find_max (L):
    max = 0
    for x in L:
        if x > max:
            max = x
    return max





Does this meet the criteria for being an algorithm?


	Is it unambiguous?  Yes.  Each step of the algorithm
consists of primitive operations,
and translating each step into Python code is very easy.

	Does it have defined inputs and outputs?  Yes.

	Is it guaranteed to terminate?   Yes.   The list L is of finite length,
so after looking at every element of the list the algorithm will
stop.

	Does it produce the correct result?  Yes.  In a formal setting you would
provide a careful proof of correctness.  In the next section I’ll sketch a
proof for an alternative solution to this problem.






A Recursive Version of find_max()

There can be many different algorithms for solving the same problem.
Here’s an alternative algorithm for find_max():


	If L is of length 1, return the first item of L.

	Set v1 to the first item of L.

	Set v2 to the output of performing find_max() on the rest of L.

	If v1 is larger than v2, return v1.
Otherwise, return v2.



Implementation:

def find_max (L):
    if len(L) == 1:
        return L[0]
    v1 = L[0]
    v2 = find_max(L[1:])
    if v1 > v2:
        return v1
    else:
        return v2





Let’s ask our questions again.


	Is it unambiguous?  Yes.  Each step is simple and easily translated into
Python.



	Does it have defined inputs and outputs?  Yes.



	Is it guaranteed to terminate?   Yes.   The algorithm obviously
terminates
if L is of length 1.  If L has more than one element,
find_max() is called with a list that’s one element shorter and the result
is used in a computation.

Does the nested call to find_max() always terminate?  Yes.  Each time,
find_max() is called with a list that’s shorter by one element,
so eventually the list will be of length 1 and the nested calls will end.





Finally, does it produce the correct result? Yes.  Here’s a sketch
of a proof. [2]

Consider a list of length 1.  In this case the largest number is also
the only number on the list.  find_max() returns this number, so
it’s correct for lists of length 1.

Now consider a longer list of length N+1, where N is some
arbitrary length.  Let’s assume that we’ve
proven that find_max() is correct for all lists of length N.
The value of v2 will therefore be the largest value in the rest of
the list.   There are two cases to worry about.


	Case 1: v1, the first item of the list, is the largest
item.  In that case, there are no other values in the list
greater than v1.  We’re assuming find_max() is
correct when executed on the rest of the list, so the value
it returns will be less than v1.  The if v1 > v2
comparison will therefore be true, so the first branch will
be taken, returning v1.  This is the largest item in the list,
so in this case the algorithm is correct.

	Case 2: v1, the first item of the list, is not the
largest item.  In that case, there is at least one value in
the list that’s greater than v1.  find_max() is
correct for the shortened version of the rest of the list,
returning the maximum value it contains, so this value must
be greater than v1.  The if v1 > v2 comparison will
therefore be false, so the else branch will be taken,
returning v2, the largest value in the rest of the list.
This case assumes that v1 is not the largest value, so
v2 is therefore the largest value, and the algorithm is
also correct in this case.



With these two cases, we’ve now shown that if find_max() is correct
for lists of length N, it’s also correct for lists of length
N+1.  In the first part of our argument, we’ve shown that
find_max() is correct for lists of length 1.  Therefore, it’s also
correct for lists that are 2 elements long, and 3 elements, and 4, 5,
6, ... up to any number.

This may seem like a trick; we showed that it’s correct for the
trivial case of the single-element list, and then showed that it’s
correct on a problem of a certain size.  Such proofs are called
inductive proofs, and they’re a well-known mathematical technique
for proving a theorem.

Carrying out an inductive proof of some property requires two steps.


	First, you show that the property is true for some simple
case: an empty list or a list of length 1, an empty set, a single
point.  Usually this demonstration is very simple; often it’s
obviously true that the property is true.  This is called the
basis case.

	Next, you assume the property is true for size N and show that it’s
true for some larger size such as N+1.  This is called the
inductive step, and is usually the more difficult one.



Once you have both demonstrations, you’ve proven the property is true
for an infinite number of values of N; correctness for N=1 implies
that the N=2 case is also correct, which in turn implies correctness
for N=3, 4, 5, and every other positive integer.  Not every theorem
can be put into a form where an inductive proof can be used.




References

XXX something on induction

Footnotes




	[1]	There are special situations where algorithms
that are sometimes wrong can still be useful.  A good example is
testing whether a number is prime.  There’s an algorithm
called the Rabin-Miller test that’s always correct
when it reports a number is composite, but has a 25% chance of being
wrong when it reports a number is prime.  One test therefore
isn’t enough to conclude you’ve found a prime,
but you can perform repeated tests
and reduce the chance of being wrong to as low as you like (but never zero).







	[2]	It’s possible to write formal proofs of
correctness for an algorithm, but the resulting proofs are lengthy
even for short algorithms such as this one.










          

      

      

    

  

    
      
          
            
  
Background: Measuring Complexity

It’s obviously most important that an algorithm solves a
given problem correctly.  How much time an algorithm will take to solve
a problem is only slightly less important.  All algorithms must
terminate eventually, because they wouldn’t be algorithms if they
didn’t, but they might run for billions of years before terminating.
In order to compare algorithms, we need a way to measure the time
required by an algorithm.

To characterize an algorithm, we really need to know how its running
time changes in relation to the size of a problem.  If we solve a
problem that’s ten times as large, how does the running time change?
If we run find_max() on a list that’s a thousand elements long
instead of a hundred elements, does it take the same amount of time?
Does it take 10 times as long to run, 100 times, or 5 times?  This is
called the algorithm’s time complexity or, occasionally, its
scalability.

To measure the time complexity, we could simply implement an algorithm
on a computer and time it on problems of different sizes.  For
example, we could run find_max() on lists from lengths ranging from
1 to 1000 and graph the results.
This is unsatisfactory  for two reasons:


	Computers perform different operations at different speeds:
addition may be very fast and division very slow.  Different
computers may have different specialities. One machine may
have very fast math but slow string operations while another
might do math very slowly.  Machines also vary in memory size
and processor, memory, and disk speeds.  Researchers would
find it difficult to compare results measured on different machines.

	Measuring performance within a given range doesn’t
tell us if the algorithm continues to scale outside of the range.
Perhaps it runs very well for problem sizes up to 1000,
but at some larger size it began to run too slowly.



Instead, the measurement is done more abstractly by counting the
number of basic operations required to run the algorithm, after
defining what is counted as an operation.  For example, if you
wanted to measure the time complexity of computing a sine function,
you might assume that only addition, subtraction, multiplication, and
division are basic operations.  On the other hand, if you were
measuring the time to draw a circle, you might include sine as a basic
operation.

Complexity is expressed using big-O notation.  The complexity is
written as O(<some function>), meaning that the number of operations
is proportional to the given function multiplied by some constant
factor.  For example, if an algorithm takes 2*(n**2) operations, the
complexity is written as O(n**2), dropping the constant multiplier of 2.

Some of the most commonly seen complexities are:


	O(1) is constant-time complexity.  The number of operations
for the algorithm doesn’t actually change as the
problem size increases.



	O(log n) is logarithmic complexity. The base used to take the
logarithm makes no difference, since it just multiplies the
operation count by a constant factor.  The most common base is base
2, written as log_2 or lg.

Algorithms with logarithmic complexity cope quite well with
increasingly large problems.  Doubling the problem size
requires adding a fixed number of new operations, perhaps
just one or two additional steps.



	O(n) time complexity means that an algorithm is linear;
doubling the problem size also doubles the number of operations required.



	O(n**2) is quadratic complexity.  Doubling the problem size
multiplies the operation count by four.  A problem 10 times
larger takes 100 times more work.



	O(n**3), O(n**4), O(n**5), etc. are polynomial complexity.



	O(2**n) is exponential complexity.  Increasing the problem
size by 1 unit doubles the work.  Doubling the problem size
squares the work.  The work increases so quickly that only
the very smallest problem sizes are feasible.





The following graph compares the growth rates of various time
complexities.

When writing down big-O notation, we can keep only the fastest-growing
term and drop slower-growing terms.  For example, instead of writing
O(n**2 + 10n + 5), we drop the lower terms and write only O(n**2).
The smaller terms don’t contribute very much to the growth of the
function as n increases.  If n increases by a factor of 100,
the n**2 term increases the work by a factor of 10,000.  The
increase of 1000 operations from the 10n term dwindles to
insignificance.

After correctness, time complexity is usually the most interesting
property of an algorithm, but in certain cases the amount of memory or
storage space required by an algorithm is also of interest.  These
quantities are also expressed using big-O notation.  For example, one
algorithm might have O(n) time and use no extra memory while another
algorithm might take only O(1) time by using O(n) extra storage space.
In this case, the best algorithm to use will vary depending on the
environment where you’re going to be running it.  A cellphone has very
little memory, so you might choose the first algorithm in order to use
as little memory as possible, even if it’s slower.  Current desktop
computers usually have gigabytes of memory, so you might choose the
second algorithm for greater speed and live with using more memory.

Big-O notation is an upper bound, expressing the worst-case time
required to run an algorithm on various inputs.  Certain inputs,
however, may let the algorithm run more quickly.  For example, an
algorithm to search for a particular item in a list may be lucky and
find a match on the very first item it tries.  The work required in
the best-case speed may therefore be much less than that required in
the worst case.

Another notation is used for the best-case time, big-omega notation.
If an algorithm is Omega(<some function>), the best-case time
is proportional to the function multiplied by some constant factor.
For example, the quicksort
algorithm discussed later in this book is Omega(n lg n) and O(n**2).
For most inputs quicksort requires time proportional to n lg n,
but for certain inputs time proportional to n**2 will be
necessary.

Big-theta notation combines both upper and lower bounds; if an
algorithm is both O(function) and Omega(function), it is also
Theta(function).  The function is therefore a tight bound on both the
upper and lower limits of the running time.

Usually the worst case is what we’re interested in.  It’s important
that we know the longest possible time an algorithm might take so that
we can determine if we can solve problems within a reasonable time.
Occasionally encountering a particular input that can be solved more
quickly may be lucky when it happens, but it can’t be relied upon, so
the best-case time usually isn’t very relevant.  For most of the
algorithms in this book, only the O() bound will discussed.


References

XXX







          

      

      

    

  

    
      
          
            
  
Simulating The Monty Hall Problem

The Monty Hall problem is a well-known puzzle in probability derived
from an American game show, Let’s Make a Deal.
(The original 1960s-era show was hosted by Monty Hall, giving this
puzzle its name.)  Intuition leads many people to get the puzzle
wrong, and when the Monty Hall problem is presented in a newspaper or
discussion list, it often leads to a lengthy argument
in letters-to-the-editor and on message boards.

The game is played like this:


	The game show set has three doors. A prize such as a car or vacation
is behind one door, and the other two doors hide a valueless prize called
a Zonk;
in most discussions of the problem, the Zonk is a goat.

	The contestant chooses one door.  We’ll assume the contestant has no inside
knowledge of which door holds the prize, so the contestant will just
make a random choice.

	The smiling host Monty Hall opens one of the other doors, always
choosing one that shows
a goat, and always offers the contestant a chance to switch their choice to
the remaining unopened door.

	The contestant either chooses to switch doors, or opts to stick with
the first choice.

	Monty calls for  the remaining two doors to open, and the contestant
wins whatever is behind their chosen door.



Let’s say a hypothetical contestant chooses door #2.  Monty might then
open door #1 and offer the chance to switch to door #3.  The
contestant switches to door #3, and then we see if the prize is behind
#3.

The puzzle is: what is the best strategy for the contestant?  Does switching
increase the chance of winning the car, decrease it, or make no difference?

The best strategy is to make the switch.
It’s possible to analyze the situation and figure this out, but
instead we’ll tackle it by simulating thousands of games and measuring
how often each strategy ends up winning.


Approach

Simulating one run of the game is straightforward.  We will write a
simulate() function that uses Python’s random [https://docs.python.org/2/library/random.html#module-random] module to
pick which door hides the prize, the contestant’s initial choice, and
which doors Monty chooses to open.  An input parameter controls
whether the contestant chooses to switch, and simulate() will
then return a Boolean telling whether the contestant’s final choice
was the winning door.

Part of the reason the problem fools so many people is that in the
three-door case the probabilities involved are 1/3 and 1/2, and it’s
easy to get confused about which probability is relevant.  Considering
the same game with many more doors makes reasoning about the problem
much clearer, so we’ll make the number of doors a configurable
parameter of the simulation script.




Solution

The simulation script is executed from the command line.  If you
supply no arguments, the script will use three doors and run 10,000
trials of both the switching and not-switching strategies.  You can
supply --doors=100 to use 100 doors and --trials=1000 to run a
smaller number of trials.

	  1
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	#!/usr/bin/env python3

"""Simulate the Monty Hall problem.

"""

import argparse, random

def simulate(num_doors, switch, verbose):
    """(int, bool): bool

    Carry out the game for one contestant.  If 'switch' is True,
    the contestant will switch their chosen door when offered the chance.
    Returns a Boolean value telling whether the simulated contestant won.
    """

    # Doors are numbered from 0 up to num_doors-1 (inclusive).

    # Randomly choose the door hiding the prize.
    winning_door = random.randint(0, num_doors-1)
    if verbose:
        print('Prize is behind door {}'.format(winning_door+1))

    # The contestant picks a random door, too.
    choice = random.randint(0, num_doors-1)
    if verbose:
        print('Contestant chooses door {}'.format(choice+1))

    # The host opens all but two doors.
    closed_doors = list(range(num_doors))
    while len(closed_doors) > 2:
        # Randomly choose a door to open.
        door_to_remove = random.choice(closed_doors)

        # The host will never open the winning door, or the door
        # chosen by the contestant.
        if door_to_remove == winning_door or door_to_remove == choice:
            continue

        # Remove the door from the list of closed doors.
        closed_doors.remove(door_to_remove)
        if verbose:
            print('Host opens door {}'.format(door_to_remove+1))

    # There are always two doors remaining.
    assert len(closed_doors) == 2

    # Does the contestant want to switch their choice?
    if switch:
        if verbose:
            print('Contestant switches from door {} '.format(choice+1), end='')

        # There are two closed doors left.  The contestant will never
        # choose the same door, so we'll remove that door as a choice.
        available_doors = list(closed_doors) # Make a copy of the list.
        available_doors.remove(choice)

        # Change choice to the only door available.
        choice = available_doors.pop()
        if verbose:
            print('to {}'.format(choice+1))

    # Did the contestant win?
    won = (choice == winning_door)
    if verbose:
        if won:
            print('Contestant WON', end='\n\n')
        else:
            print('Contestant LOST', end='\n\n')
    return won


def main():
    # Get command-line arguments
    parser = argparse.ArgumentParser(
        description='simulate the Monty Hall problem')
    parser.add_argument('--doors', default=3, type=int, metavar='int',
                        help='number of doors offered to the contestant')
    parser.add_argument('--trials', default=10000, type=int, metavar='int',
                        help='number of trials to perform')
    parser.add_argument('--verbose', default=False, action='store_true',
                        help='display the results of each trial')
    args = parser.parse_args()

    print('Simulating {} trials...'.format(args.trials))

    # Carry out the trials
    winning_non_switchers = 0
    winning_switchers = 0
    for i in range(args.trials):
        # First, do a trial where the contestant never switches.
        won = simulate(args.doors, switch=False, verbose=args.verbose)
        if won:
            winning_non_switchers += 1

        # Next, try one where the contestant switches.
        won = simulate(args.doors, switch=True, verbose=args.verbose)
        if won:
            winning_switchers += 1

    print('    Switching won {0:5} times out of {1} ({2}% of the time)'.format(
            winning_switchers, args.trials,
            (winning_switchers / args.trials * 100 ) ))
    print('Not switching won {0:5} times out of {1} ({2}% of the time)'.format(
            winning_non_switchers, args.trials,
            (winning_non_switchers / args.trials * 100 ) ))


if __name__ == '__main__':
    main()







A sample run:

-> code/monty-hall.py
Simulating 10000 trials...
    Switching won  6639 times out of 10000 (66.39% of the time)
Not switching won  3357 times out of 10000 (33.57% of the time)
->





Our simulation confirms the result: it’s better to switch, which wins
the car more often.  If you switch, you have a 2/3 probability of
winning the car; if you don’t switch, you’ll only win the car 1/3 of
the time.  The numbers from our simulation bear this out, though our random
trials usually won’t result in percentages that are exactly 66.6% or 33.3%.

If you supply the --verbose switch, the simulator will print out
each step of the game so you can work through some examples.  Be sure to
use --trials to run a smaller number of trials:

-> code/monty-hall.py  --verbose --trials=2
Simulating 2 trials...
Prize is behind door 2
Contestant chooses door 3
Host opens door 1
Contestant LOST

Prize is behind door 3
Contestant chooses door 1
Host opens door 2
Contestant switches from door 1 to 3
Contestant WON

Prize is behind door 2
Contestant chooses door 3
Host opens door 1
Contestant LOST

Prize is behind door 3
Contestant chooses door 3
Host opens door 1
Contestant switches from door 3 to 2
Contestant LOST

    Switching won     1 times out of 2 (50.0% of the time)
Not switching won     0 times out of 2 (0.0% of the time)
->








Code Discussion

The command-line arguments are parsed using the argparse [https://docs.python.org/2/library/argparse.html#module-argparse] module,
and the resulting values are passed into the simulate() function.

When there are num_doors doors, simulate() numbers the doors from 0 up to num_doors-1.
random.randint(a, b)() picks a random integer from the range a to b,
possibly choosing one of the endpoints, so here we use
random.randint(0, num_doors-1)().

To figure out which doors the host will open, the code makes a list of
the currently closed doors, initially containing all the integers from
0 to num_doors-1.  Then the code loops, picking a random door from
the list to open.  By our description of the problem, Monty will never
open the contestant’s door or the one hiding the prize, so the loop
excludes those two doors and picks a different door.  The loop
continues until only two doors remain, so Monty will always open
num_doors-2 doors.

To implement the contestant’s switching strategy, we take the
list of closed doors, which is now 2 elements long, and remove
the contestant’s current choice.  The remaining element is therefore
the door they’re switching to.




Lessons Learned

This approach to answering a question, where we randomly generate many
possible inputs, calculate the outcomes, and summarize the results, is
called Monte Carlo simulation and has a long history, having been
first developed in the 1940s by mathematicians working on the
Manhattan Project to build an atomic bomb.

In the case of the Monty Hall problem, the simulation is
straightforward to program and we can figure out an analytical result,
so it’s easy to inspect the output and verify that the program is
correct.  Often, though, simulations are for attacking problems too
complicated to be solved beforehand and then checking for correctness
is much harder.  The programmers will need to carefully validate their
code by unit-testing the simulation’s internal functions and adding
checks for internal correctness.  monty-hall.py does this in a
small way with an assert statement that will raise an
exception if the number of closed doors is not equal to 2, which would
indicate some sort of failure in the simulate() function’s logic
or input data.  We could potentially add more such checks:

assert 0 <= winning_door < num_doors, 'Winning door is not a legal door'
assert 0 <= choice < num_doors, 'Contestant choice is not a legal door'





In our simple simulation, these assertions are never going to fail, but
perhaps we might make changes to simulate() that make the function
incorrect, or perhaps someday a bug in Python’s random [https://docs.python.org/2/library/random.html#module-random] module
will come to light.




References


	http://en.wikipedia.org/wiki/Monty_Hall_problem

	Discusses the history of the problem and various approaches to solving it.

	http://library.lanl.gov/cgi-bin/getfile?00326867.pdf

	“Stan Ulam, John von Neumann, and the Monte Carlo Method” (1987), by
Roger Eckhardt, is a discussion of the very first Monte Carlo simulation
and some of the mathematical problems encountered while implementing it.
This first simulation modelled neutrons diffusing through fissionable
material in an effort to determine whether a chain reaction would occur.

(The PDF also features a discussion of how random number generators
work, written by Tony Warnock.)



	http://www.youtube.com/watch?v=0W978thuweY

	A condensed episode of an episode of the original game show, showing
Monty Hall’s quick wit in action.  Notice that the original game is
more complicated than the Monty Hall puzzle as described above
because Monty has many more actions available to him: he can offer
the choice of an unknown prize or an unknown amount of cash, or
suggest trading in what you’ve already won for a different unknown
prize.









          

      

      

    

  

    
      
          
            
  
Background: Drawing Graphics

Throughout the rest of this book, we’ll need to display graphical
output.  There are many different graphical toolkits available for
Python; the References section lists some of them.
For this book I chose one of the simplest: the turtle [https://docs.python.org/2/library/turtle.html#module-turtle] module.

My reasons for selecting it are:


	turtle [https://docs.python.org/2/library/turtle.html#module-turtle] is included in the binary installers downloadable from
python.org.  No extra packages are required to use it.

	turtle [https://docs.python.org/2/library/turtle.html#module-turtle] can be used for drawing with Cartesian coordinates
by calling the setposition() method, but the turtle primitives
are also useful for constructing interesting examples.  Most other toolkits
only support Cartesian plotting.



Unfortunately the module doesn’t support printed output,
but I think that isn’t much of a disadvantage because interactive
graphics are more interesting for modern learners.

Turtle graphics are an approach with a long history.  Originally the
turtle was a physical object, a robot that could be placed on a large
sheet of paper and directed to move.  Then the turtle become a visual
abstraction on a high-resolution screen, often represented as a
triangle.  Even in a purely graphical format, the concept of the
turtle can make it easier to picture what actions are being carried
out, and hence what a program is doing.


Approach

The turtle [https://docs.python.org/2/library/turtle.html#module-turtle] module provides an environment where turtles move
upon a 2-dimensional grid.  Turtles have a position, a heading (the
direction in which the turtle is facing), and a variety of possible
states (turtles can draw lines in a particular colour when they move
or leave no trace) and actions (turning left or right; moving forward
or backward.

Here’s a brief overview of the functions and methods used in this
book.  Consult Reference Card: Turtle Graphics when you need some help
remembering a method, and the Python Library Reference’s documentation
for the turtle [https://docs.python.org/2/library/turtle.html#module-turtle] module for a complete description of all the
module’s features.

(The module often has synonyms for the same action; I’ve chosen
the one I think is the clearest.  For example, the methods
backward(dist), back(dist), and bk(dist)
all do the same thing, moving the turtle backwards.  I’ve chosen
to use back(dist) consistently.)

You create a turtle by calling turtle.Turtle().  Doing this will
automatically pop
up a separate window (called a Screen)
on your computer’s display. You can call
turtle.Screen to get an object representing this window;
it has a few methods such as title()
to set the title, screensize() to get the size of the canvas,
and clear() to restore the screen’s contents
to their initial state.

A Turtle object has many methods that can be grouped into
families.  There are methods for  controlling the turtle’s motion:


	forward(distance) moves the turtle forward distance pixels, in
whatever direction the turtle is pointing.

	back(distance) moves backward distance pixels.

	left(angle) and right(angle) change the turtle’s orientation
without moving it.  By default angles are measured in degrees, but you
can call the turtle’s radians() method to use radians in future
calls to left() and right().

	The turtle’s movements aren’t normally performed instantly, but
instead are slowed down and animated so that the eye can follow what
the turtle is doing.  You can change the speed of the turtle’s motion
by calling speed(value), where value is a string giving
a speed; “fastest” results in instananeous motion,
and “fast”, “normal”, “slow”, and “slowest” are progressively slower
speeds.

	The turtle is usually drawn as an arrowhead.  The hideturtle()
method prevents the turtle from being displayed, and showturtle()
brings it back.



To read the turtle’s position and heading:


	pos() returns a tuple giving the (x,y) coordinate where
the turtle is currently located.  xcor() and ycor()
return just the X or Y coordinate.

	heading() returns the turtle’s heading, usually in degrees
(but if you’ve previously called radians() the result will be
measured in radians).



To move the turtle to a particular coordinate and orientation:


	setpos(x, y) moves the turtle to the given coordinate,
drawing a line if the pen is down.  You can also provide a pair of
coordinates as a single argument.

	setheading(angle) sets the turtle’s orientation to angle.
Usually 0 degrees is east, 90 is north, 180 is west, and 270 is south.

	home() returns the turtle to position (0,0) and resets its
orientation to east.



The turtle can draw a line behind it as it moves.  To control this line:


	pendown() puts the pen down on the paper (metaphorically), so the
turtle will leave a line as it moves.

	penup() raises the pen from the paper, so the turtle will move
without leaving any trace.

	pencolor(color) sets the colour of the line traced.  color
is a string giving a primary colour name, such as “red” or “yellow”, or an
RGB colour specification such as “#33cc8c”.  (The database of colour names is
limited, so specific names such as  “crimson” or “octarine” won’t work,
but simple names such as “red”, “blue”, and “green” are understood.)

	pensize(width) sets the width of the line traced.  The
width starts out as 1 pixel, but can be changed using this method.



The turtle can also stamp its image on the display:


	stamp() records a copy of the turtle’s shape onto the canvas.
This method returns an integer stamp ID, so that you can remove the image
later by calling clearstamp() and passing it the ID.

	dot(size, color) draws a circular dot of the given size and
colour.  The colour is optional; if not supplied, the turtle’s current
pen colour is used.

	The turtle reset() method clears all of the drawings made by that
turtle and returns it to the home position.






Example

This program doesn’t exercise every single method – that would be
tediously long – but it shows what turtle graphics are like by
drawing some simple graphics and then waiting for a keypress before
exiting.
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	#!/usr/bin/env python3

import sys
import turtle

def border(t, screen_x, screen_y):
    """(Turtle, int, int)

    Draws a border around the canvas in red.
    """
    # Lift the pen and move the turtle to the center.
    t.penup()
    t.home()

    # Move to lower left corner of the screen; leaves the turtle
    # facing west.
    t.forward(screen_x / 2)
    t.right(90)
    t.forward(screen_y / 2)
    t.setheading(180)           # t.right(90) would also work.
    
    # Draw the border
    t.pencolor('red')
    t.pendown()
    t.pensize(10)
    for distance in (screen_x, screen_y, screen_x, screen_y):
        t.forward(distance)
        t.right(90)

    # Raise the pen and move the turtle home again; it's a good idea
    # to leave the turtle in a known state.
    t.penup()
    t.home()

def square(t, size, color):
    """(Turtle, int, str)

    Draw a square of the chosen colour and size.
    """
    t.pencolor(color)
    t.pendown()
    for i in range(4):
        t.forward(size)
        t.right(90)

def main():
    # Create screen and turtle.
    screen = turtle.Screen()
    screen.title('Square Demo')
    screen_x, screen_y = screen.screensize()
    t = turtle.Turtle()

    # Uncomment to draw the graphics as quickly as possible.
    ##t.speed(0)

    # Draw a border around the canvas
    border(t, screen_x, screen_y)

    # Draw a set of nested squares, varying the color.
    # The squares are 10%, 20%, etc. of half the size of the canvas.
    colors = ['red', 'orange', 'yellow', 'green', 'blue', 'violet']
    t.pensize(3)
    for i, color in enumerate(colors):
        square(t, (screen_y / 2) / 10 * (i+1), color)

    print('Hit any key to exit')
    dummy = input()
        
if __name__ == '__main__':
    main()







The display resulting from this program is:

[image: Display produced by turtledemo.py, showing a red border containing several multicoloured squares.]



Code Discussion

One thing to learn from the demo program is that drawing functions
such as border() and square() should be careful about the
state of the turtle they expect at the beginning and the state it’s
left in afterwards.  A frequent error is to leave the turtle pointing
in an unexpected direction, causing later actions to be carried out in
the wrong place.  Watching the animated turtle usually makes such
mistakes apparent.




References


	http://cairographics.org/

	Cairo is a 2D graphics library with a Python API that supports both
screen and printed output.

	“Turtle Geometry: The Computer as a Medium for Exploring Mathematics”

	By Harold Abelson and Andrea diSessa.
A 1981 textbook that begins with polygons and ends with the
curved spacetime of general relativity, using turtle graphics
both to draw illustrative examples and as a conceptual model.
ISBN 978-0-262-01063-4 (ISBN 978-0-262-51037-0 for the paperback).









          

      

      

    

  

    
      
          
            
  
Simulating Planetary Orbits

According to Isaac Newton, the force of gravitational attraction
between two objects is given by:


F = G\frac{m_1m_2}{d^2}

where G is the gravitational constant, m_1 and
m_2 are the masses of the two objects, and d is the
distance between them.  In SI units, G has the value
6.67428 \times 10^{-11} N(m/kg)^2,
so d is measured in meters, the masses are measured in kilograms,
and the resulting F is in newtons.

Using this equation, Newton determined a formula for calculating how
long it took an object to complete an orbit around a central mass.
However, when dealing with three or more objects, it’s generally not possible
to find a tidy formula to calculate what the three bodies will do.

Instead, such problems are tackled by numeric integration, a
brute-force approach where you take all the object positions and
velocities at time T, calculate the forces they exert on each
other, update the velocities, and calculate the new positions at time
T+\epsilon.  Then you repeat this in a
loop, stepping forward through time, and output or plot the results.


Approach

To implement this in Python, we’ll use the turtle [https://docs.python.org/2/library/turtle.html#module-turtle] module to
provide a graphical display, subclassing the Turtle class to
create a Body class that will have
additional attributes:
mass for the object’s mass,
vx and vy for its velocity,
and px and py for its position.

An added method on Body, attraction(), will
take another Body instance
and return the X and Y components of the force exerted
by the other body.




Solution
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	#!/usr/bin/env python3

import math
from turtle import *

# The gravitational constant G
G = 6.67428e-11

# Assumed scale: 100 pixels = 1AU.
AU = (149.6e6 * 1000)     # 149.6 million km, in meters.
SCALE = 250 / AU

class Body(Turtle):
    """Subclass of Turtle representing a gravitationally-acting body.

    Extra attributes:
    mass : mass in kg
    vx, vy: x, y velocities in m/s
    px, py: x, y positions in m
    """
    
    name = 'Body'
    mass = None
    vx = vy = 0.0
    px = py = 0.0
    
    def attraction(self, other):
        """(Body): (fx, fy)

        Returns the force exerted upon this body by the other body.
        """
        # Report an error if the other object is the same as this one.
        if self is other:
            raise ValueError("Attraction of object %r to itself requested"
                             % self.name)

        # Compute the distance of the other body.
        sx, sy = self.px, self.py
        ox, oy = other.px, other.py
        dx = (ox-sx)
        dy = (oy-sy)
        d = math.sqrt(dx**2 + dy**2)

        # Report an error if the distance is zero; otherwise we'll
        # get a ZeroDivisionError exception further down.
        if d == 0:
            raise ValueError("Collision between objects %r and %r"
                             % (self.name, other.name))

        # Compute the force of attraction
        f = G * self.mass * other.mass / (d**2)

        # Compute the direction of the force.
        theta = math.atan2(dy, dx)
        fx = math.cos(theta) * f
        fy = math.sin(theta) * f
        return fx, fy

def update_info(step, bodies):
    """(int, [Body])
    
    Displays information about the status of the simulation.
    """
    print('Step #{}'.format(step))
    for body in bodies:
        s = '{:<8}  Pos.={:>6.2f} {:>6.2f} Vel.={:>10.3f} {:>10.3f}'.format(
            body.name, body.px/AU, body.py/AU, body.vx, body.vy)
        print(s)
    print()

def loop(bodies):
    """([Body])

    Never returns; loops through the simulation, updating the
    positions of all the provided bodies.
    """
    timestep = 24*3600  # One day
    
    for body in bodies:
        body.penup()
        body.hideturtle()

    step = 1
    while True:
        update_info(step, bodies)
        step += 1

        force = {}
        for body in bodies:
            # Add up all of the forces exerted on 'body'.
            total_fx = total_fy = 0.0
            for other in bodies:
                # Don't calculate the body's attraction to itself
                if body is other:
                    continue
                fx, fy = body.attraction(other)
                total_fx += fx
                total_fy += fy

            # Record the total force exerted.
            force[body] = (total_fx, total_fy)

        # Update velocities based upon on the force.
        for body in bodies:
            fx, fy = force[body]
            body.vx += fx / body.mass * timestep
            body.vy += fy / body.mass * timestep

            # Update positions
            body.px += body.vx * timestep
            body.py += body.vy * timestep
            body.goto(body.px*SCALE, body.py*SCALE)
            body.dot(3)


def main():
    sun = Body()
    sun.name = 'Sun'
    sun.mass = 1.98892 * 10**30
    sun.pencolor('yellow')

    earth = Body()
    earth.name = 'Earth'
    earth.mass = 5.9742 * 10**24
    earth.px = -1*AU
    earth.vy = 29.783 * 1000            # 29.783 km/sec
    earth.pencolor('blue')

    # Venus parameters taken from
    # http://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html
    venus = Body()
    venus.name = 'Venus'
    venus.mass = 4.8685 * 10**24
    venus.px = 0.723 * AU
    venus.vy = -35.02 * 1000
    venus.pencolor('red')

    loop([sun, earth, venus])

if __name__ == '__main__':
    main()










Code Discussion

The system described in the code consists of the Sun, Earth, and
Venus, so the main() function creates three Body
instances for each body and passed to the loop() function.

The loop() function is the heart of the simulation, taking a
list of Body instances and then performing simulation steps
forever.  The time step chosen is one day, which works well for our
Sun/Earth/Venus example.  When you run the program, you can see how
long it takes for the plot to complete an entire orbit; for Earth it’s
the expected 365 days and for Venus it’s 224 days.




Lessons Learned

Each simulation step requires calculating N * (N-1) distances
and attractions, so the time complexity is O(N^2).  On a
laptop or desktop, the display will be visible changing
up to around 20 objects.  More efficient coding would let us
handle more objects; we could rewrite the calculations in C or
parallelize the code to divide the work in each step among multiple
threads or CPUs.  You could also adjust the timestep dynamically: if
objects are far apart, a larger timestep would introduce less error,
and the timestep could be shortened when objects are interacting
more closely.

These techniques would increase our practical limit to hundreds
(10^3) or thousands (10^4) of objects, but this means
we can’t simulate even a small galaxy, which might contain tens of
millions of stars (10^7).  (Our galaxy is estimated to have
around 200 billion stars, 2 \times 10^{11}.)  Entirely
different approaches need to be taken for that problem size; for
example, the attraction of distant particles is approximated and only
nearby particles are calculated exactly.  The references include a
survey by Drs. Trenti and Hut that describes the techniques used for
larger simulations.




References


	http://www.scholarpedia.org/article/N-body_simulations

	This survey, by Dr. Michele Trenti and Dr. Piet Hut, describes
how the serious scientific N-body simulators work, using trees
to approximate the attraction at great distances.  Such programs are able
to run in O(N log(N)) time.

	http://ssd.jpl.nasa.gov/horizons.cgi

	NASA’s Jet Propulsion Laboratory provides a system called HORIZONS
that returns accurate positions and velocities for objects within
the solar system.  In the example code, the values used are only
rough approximations; the orbital distances and planet velocities
are set to the mean distances and their relative positions don’t
correspond to any actual point in time – but they produce
reasonable output.









          

      

      

    

  

    
      
          
            
  
Problem: Simulating the Game of Life

In 1970, mathematician John H. Conway proposed a simulation that he
called the Game of Life.  Martin Gardner wrote an column about Life in
the October 1970 issue of Scientific American that
brought widespread attention to the Game of Life.  It’s not what most people
think of as a game; there are no  players and there’s no way to win
or lose the game.  Instead, Life is more like a model or simulation in
which you can play and experiment.

Life takes place on a two-dimensional grid of square cells.  Each
square cell can be either alive or dead (full or empty).


[image: Example of a Life board.]Example of a Life board.  Cell x‘s eight neighbours are numbered.



The simulation is carried out at fixed time steps; every time step,
all the cells on the grid can switch from dead to alive, or alive to
dead, depending on four simple rules that only depend on a given
cell’s eight immediate neighbours.  Let’s take the cell x in the
diagram, whose neighbours have been numbered 1 through 8 in the
diagram.

If the cell is dead:


	Birth: if exactly three of its neighbours are
alive, the cell will become alive at the next step.



If the cell is already alive:


	Survival: if the cell has two or three live neighbours, the cell
remains alive.



Otherwise, the cell will die:


	Death by loneliness: if the cell has only zero or one live
neighbours, the cell will become dead at the next step.

	Death by overcrowding: if the cell alive and has more than three
live neighbours, the cell also dies.



These rules are simple and readily understandable, but they lead to
surprisingly complex behaviour.  (The general term for a simulation
carried out on a grid of cells and following some simple rules is a
cellular automaton.)  For example, here are some patterns that
occur after starting with five live cells in a row.

This pattern ends up in a cycle that repeats itself endlessly.
Researchers in Life have coined many terms for different types of
pattern, and this one is called an oscillator.
The wiki at ConwayLife.com <http://www.conwaylife.com/wiki/Main_Page>
describes many such terms.  For example, oscillators go through a
cycle of states and return to their initial state; still life
patterns are stable and don’t change over time at all; spaceships
return to their initial configuration but in a different position, and
therefore the pattern moves through the grid.


Approach

It’s possible to work out Life patterns using pencil and paper, but
obviously this is boring for large or long-lived patterns, and there’s
also the risk of error.  Computer implementations of Life were written
soon after Conway described it.

A basic implementation is straightforward: store the state of the
board, and loop over every cell to determine its new state.  To be
correct, the code has to record new states in a copy of the board’s
data structure and not update the original board as it’s scanned.




Solution

This implementation of Life uses the turtle [https://docs.python.org/2/library/turtle.html#module-turtle] graphics to
draw the board.  Keystrokes are used to control the program; hit ‘R’ to
fill the board with a random pattern, and then ‘S’ to step through
one generation at a time.
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	#!/usr/bin/env python3

# life.py -- A turtle-based version of Conway's Game of Life.
#
# An empty board will be displayed, and the following commands are available:
#  E : Erase the board
#  R : Fill the board randomly
#  S : Step for a single generation
#  C : Update continuously until a key is struck
#  Q : Quit
#  Cursor keys :  Move the cursor around the board
#  Space or Enter : Toggle the contents of the cursor's position
#

import sys
import turtle
import random

CELL_SIZE = 10                  # Measured in pixels

class LifeBoard:
    """Encapsulates a Life board

    Attributes:
    xsize, ysize : horizontal and vertical size of the board
    state : set containing (x,y) coordinates for live cells.

    Methods:
    display(update_board) -- Display the state of the board on-screen.
    erase() -- clear the entire board
    makeRandom() -- fill the board randomly
    set(x,y) -- set the given cell to Live; doesn't refresh the screen
    toggle(x,y) -- change the given cell from live to dead, or vice
                   versa, and refresh the screen display

    """
    def __init__(self, xsize, ysize):
        """Create a new LifeBoard instance.

        scr -- curses screen object to use for display
        char -- character used to render live cells (default: '*')
        """
        self.state = set()
        self.xsize, self.ysize = xsize, ysize

    def is_legal(self, x, y):
        "Returns true if the x,y coordinates are legal for this board."
        return (0 <= x < self.xsize) and (0 <= y < self.ysize)

    def set(self, x, y):
        """Set a cell to the live state."""
        if not self.is_legal(x, y):
            raise ValueError("Coordinates {}, {} out of range 0..{}, 0..{}".format(
                    x, y, self.xsize, self.ysize))
                             
        key = (x, y)
        self.state.add(key)

    def makeRandom(self):
        "Fill the board with a random pattern"
        self.erase()
        for i in range(0, self.xsize):
            for j in range(0, self.ysize):
                if random.random() > 0.5:
                    self.set(i, j)

    def toggle(self, x, y):
        """Toggle a cell's state between live and dead."""
        if not self.is_legal(x, y):
            raise ValueError("Coordinates {}, {} out of range 0..{}, 0..{}".format(
                    x, y, self.xsize, self.ysize))
        key = (x, y)
        if key in self.state:
            self.state.remove(key)
        else:
            self.state.add(key)

    def erase(self):
        """Clear the entire board."""
        self.state.clear()

    def step(self):
        "Compute one generation, updating the display."
        d = set()
        for i in range(self.xsize):
            x_range = range( max(0, i-1), min(self.xsize, i+2) )
            for j in range(self.ysize):
                s = 0
                live = ((i,j) in self.state)
                for yp in range( max(0, j-1), min(self.ysize, j+2) ):
                    for xp in x_range:
                        if (xp, yp) in self.state:
                            s += 1

                # Subtract the central cell's value; it doesn't count.
                s -= live             
                ##print(d)
                ##print(i, j, s, live)
                if s == 3:
                    # Birth
                    d.add((i,j))
                elif s == 2 and live: 
                    # Survival
                    d.add((i,j))
                elif live:
                    # Death
                    pass

        self.state = d

    #
    # Display-related methods
    #                    
    def draw(self, x, y):
        "Update the cell (x,y) on the display."
        turtle.penup()
        key = (x, y)
        if key in self.state:
            turtle.setpos(x*CELL_SIZE, y*CELL_SIZE)
            turtle.color('black')
            turtle.pendown()
            turtle.setheading(0)
            turtle.begin_fill()
            for i in range(4):
                turtle.forward(CELL_SIZE-1)
                turtle.left(90)
            turtle.end_fill()
            
    def display(self):
        """Draw the whole board"""
        turtle.clear()
        for i in range(self.xsize):
            for j in range(self.ysize):
                self.draw(i, j)
        turtle.update()


def display_help_window():
    from turtle import TK
    root = TK.Tk()
    frame = TK.Frame()
    canvas = TK.Canvas(root, width=300, height=200, bg="white")
    canvas.pack()
    help_screen = turtle.TurtleScreen(canvas)
    help_t = turtle.RawTurtle(help_screen)
    help_t.penup()
    help_t.hideturtle()
    help_t.speed('fastest')

    width, height = help_screen.screensize()
    line_height = 20
    y = height // 2 - 30
    for s in ("Click on cells to make them alive or dead.",
              "Keyboard commands:",
              " E)rase the board",
              " R)andom fill",
              " S)tep once or",
              " C)ontinuously -- use 'S' to resume stepping",
              " Q)uit"):
        help_t.setpos(-(width / 2), y)
        help_t.write(s, font=('sans-serif', 14, 'normal'))
        y -= line_height
    

def main():
    display_help_window()

    scr = turtle.Screen()
    turtle.mode('standard')
    xsize, ysize = scr.screensize()
    turtle.setworldcoordinates(0, 0, xsize, ysize)

    turtle.hideturtle()
    turtle.speed('fastest')
    turtle.tracer(0, 0)
    turtle.penup()

    board = LifeBoard(xsize // CELL_SIZE, 1 + ysize // CELL_SIZE)

    # Set up mouse bindings
    def toggle(x, y):
        cell_x = x // CELL_SIZE
        cell_y = y // CELL_SIZE
        if board.is_legal(cell_x, cell_y):
            board.toggle(cell_x, cell_y)
            board.display()

    turtle.onscreenclick(turtle.listen)
    turtle.onscreenclick(toggle)

    board.makeRandom()
    board.display()

    # Set up key bindings
    def erase():
        board.erase()
        board.display()
    turtle.onkey(erase, 'e')

    def makeRandom():
        board.makeRandom()
        board.display()
    turtle.onkey(makeRandom, 'r')

    turtle.onkey(sys.exit, 'q')

    # Set up keys for performing generation steps, either one-at-a-time or not.
    continuous = False
    def step_once():
        nonlocal continuous
        continuous = False
        perform_step()

    def step_continuous():
        nonlocal continuous
        continuous = True
        perform_step()

    def perform_step():
        board.step()
        board.display()
        # In continuous mode, we set a timer to display another generation
        # after 25 millisenconds.
        if continuous:
            turtle.ontimer(perform_step, 25)

    turtle.onkey(step_once, 's')
    turtle.onkey(step_continuous, 'c')

    # Enter the Tk main loop
    turtle.listen()
    turtle.mainloop()

if __name__ == '__main__':
    main()










Code Discussion

The LifeBoard class has a state attribute that’s a
set of (X,Y) tuples that contain live cells.  The coordinate values
can vary between 0 and an upper limit specified by the xsize
and ysize attributes.

The step() method computes a single Life generation.  It loops
over the entire board, and for each cell the code counts the number of
live cells surrounding it.  A new set is used to record the cells that
are live in the new generation, and after the whole board has been
scanned, the new set replaces the existing state.

The size of the state set is therefore proportional to the
number of live cells at any given time.  Another approach would be
just to have an N x N array representing the board, which would
require a fixed amount of memory.

If there are only a few live cells on a large board, most of the time
will be spent scanning empty areas of the board where we know nothing
is going to happen.  Cells never come alive spontaneously, without any
live neighbours.  Therefore, one minor optimization is to record the
minimum and maximum coordinates of live cells, and then limit the
scanning accordingly.  An entirely different approach called Hashlife
represents the board as a quadtree, a 2-dimensional tree structure,
and relies on large Life patterns often containing many copies of
similar structures.  (See the references for an explanation of
Hashlife.)




Lessons Learned

Part of what makes Life so fascinating is that it’s easy to ask
questions and then try to answer them.  For example, if you start with
a straight line of N cells, which values of N produce interesting
patterns?  What if you make squares, or two lines of cells?  This
leads to asking more theoretical questions: are there Life patterns
that can make copies of themselves?  How fast can a spaceship move?
You can get an idea of the complexity hiding inside Life by exploring
some of the references for this section.

You may wonder if there’s anything special about the rules that Conway
chose for Life.  For example, what if live cells survived when they
had four neighbours instead of dying?  You can easily experiment with
different rules by modifying the life.py program.  Mirek
Wojtowicz has written a list of alternate rules at
http://www.mirekw.com/ca/rullex_life.html and comments on the
different properties of the resulting simulations.

People have also created many other cellular automata that change
other aspects such as:


	having the world be a 3-dimensional grid of cubes or a 1-dimensional
line of cells instead of a 2-dimensional grid.

	use a triangular or hexagonal grid instead of a square one.

	have multiple colours for live cells; a newborn cell’s can either be the majority colour
of its neighbours, or

	have the cells containing decimal values between 0 and 1, instead of restricting
values to only 0 and 1.



Fairly soon after Life was invented, Conway proved that there existed
Life patterns that were equivalent to a Turing Machine and therefore
could carry out any computable function.  In April 2000, Paul Rendell actually
constructed a Life pattern that behaved like a Turing machine.
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Relevant web pages, books, with an annotation about why it’s notable
or worthwhile.


	http://www.math.com/students/wonders/life/life.html

	An introductory article by Paul Callahan.  The web page includes a Java applet
that’s similar to our Python application.

	http://www.nytimes.com/1993/10/12/science/scientist-at-work-john-h-conway-at-home-in-the-elusive-world-of-mathematics.html

	A New York Times profile of mathematician John H. Conway,
who invented Life.

	http://www.ibiblio.org/lifepatterns/october1970.html

	A copy of Martin Gardner’s 1970 Scientific American article
that started it all.

	http://home.interserv.com/~mniemiec/lifeterm.htm

	A glossary of Life terminology.

	http://www.conwaylife.com/wiki/

	LifeWiki contains over a thousand Wiki articles about Life, including definitions
of terms and descriptions of various patterns.

	http://www.drdobbs.com/jvm/an-algorithm-for-compressing-space-and-t/184406478

	An April 2006 article by Tomas G. Rokicki that explains the HashLife
algorithm and implements it in Java.









          

      

      

    

  

    
      
          
            
  
Reference Card: Turtle Graphics


XXX write a reference card of methods



	display a canvas on which turtles run around.

	turtles have various methods: (pick a fixed subset)

	forward/backward/right/left/speed

	pos()/ycor/xcor/heading

	pen/penup/pendown

	hideturtle/showturtle

	home/setpos/setheading

	dot/stamp/clearstamp/reset
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